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Instituto de Investigación Matemática
Universidad Mayor de San Andrés

Spacelike surfaces in Minkowski 4−space
with a canonical normal null direction

Victor Patty1
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Abstract
We say that a spacelike surface in the four dimensional Minkowski space R3,1

has a canonical normal null direction with respect to a parallel vector field Z
in R3,1 if the normal part of Z is a lightlike normal vector field on the surface.
We describe the geometric properties of a spacelike surface endowed with a
canonical normal null direction and we obtain some characterizations of these
surfaces. Moreover, using their Gauss map we study other properties of these
surface: the associated ellipse of curvature and their asymptotic directions.
Finally, we give two different ways to building these surfaces, one of them
involves a nonlinear partial differential equation.
Keywords: Spacelike surfaces, Minkowski space, Canonical normal null
direction, Asymptotic direction.

1. Introduction

Consider the four dimensional Minkowski space R3,1 defined by R4 endowed with the
tensor metric of signature (3, 1),

⟨·, ·⟩ = dx21 + dx22 + dx23 − dx24.

A surfaceM ⊂ R3,1 is said to be spacelike if the metric ⟨·, ·⟩ induces a Riemannian metric
on M, thus, at each point p of a spacelike surface M, the Minkowski space is split as
R3,1 = TpM ⊕NpM, where the tangent plane TpM and the normal plane NpM at p are
respectively equipped with a metric of signature (2, 0) and (1, 1) (see for example [9]).

Definition 1.1. We say that a spacelike surface M ⊂ R3,1 has a canonical normal null
direction with respect to a parallel vector field Z in R3,1 if the normal part Z⊥ of Z is a
lightlike normal vector field on M.

The previous definition on the notion of canonical normal null direction is the mean
concept in this paper. It makes sense for spacelike submanifolds, not only for surfaces,
in the n−dimensional Minkowski space. It is inspired in the concept of timelike surfaces
with a canonical null direction with respect to a parallel vector field in Minkowski space
defined by G. Ruiz and the author in [10]: a canonical null direction on a timelike surface
is given as the tangent part of the parallel vector field.
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We can also related with the notion of canonical principal direction on a surface defined
by F. Dillen and his collaborators in [5, 6]: they defined a canonical principal direction as
a principal direction of the surface given as the tangent part of the parallel vector field.
Finally, E. Garnica, G. Ruiz and O. Palmas in [7] investigated the case of hypersurfaces
with a canonical principal direction with respect to a conformal vector field. We also
refer to the results obtained in [3] and [8] where the authors study submanifolds with
respect to certain given vector fields.

In this paper, we are interested in the description of the geometric properties of a
spacelike surface endowed with a canonical normal null direction in the four dimensional
Minkowski space.

This paper is organized as follows. In Section 2, we study the fundamental equations
which determine a canonical normal null direction on a spacelike surface in Minkowski
space and we get properties about their geometry in terms of a differentiable function and
a differential 1−form on the surface. An interesting consequence is given in Proposition
2.7: if the spacelike surface is minimal and has a canonical normal null direction then it
is flat and has flat normal bundle. We also characterize these surfaces, in some particular
cases, we get that they are ruled surfaces.

In Section 3, we describe the Gauss map of a spacelike surface endowed with a canon-
ical normal null direction using bivectors of the Minkowski space and the Grassmannian
of the oriented spacelike 2-planes. We also describe the parametrization of the ellipse
of curvature associated, we find the mean curvature directions and the asymptotic di-
rections on the surface; for example, we prove that Z⊤, the tangent part of Z, is an
asymptotic direction on the surface and the existence of another asymptotic direction
depends on the sign of the Gauss curvature K.
In Section 4, we give two different forms to building spacelike surfaces endowed with a

canonical normal null direction in the Minkowski space. The first one consists of transla-
tion spacelike surfaces in Minkowski space, that is, surfaces given by the sum of curves.
The second one being the graph of a differential function (x, y) 7→ (f(x, y), g(x, y)) ∈ R2,
in this case, we prove in Proposition 4.2 that such surfaces have a canonical normal null
direction with respect to canonical vector field e1 if and only if the functions f and g
satisfy the fully nonlinear partial differential equation on a open set of R2

(1 + f 2
y )g

2
x − 2fxfygxgy − (1− g2y)f

2
x = 0.

Finally, using conformal functions over the Lorentz numbers, we construct some partic-
ular solutions of this partial differential equation.

2. Fundamental equations

We consider a spacelike surfaceM in R3,1 with a given canonical normal null direction
Z⊥ induced by Z. Suppose that Z is a unit spacelike vector field, in this case, using the
natural decomposition

Z = Z⊤ + Z⊥ ∈ TM ⊕ TN ≃ R3,1,
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and since ⟨Z⊥, Z⊥⟩ = 0, we have that ⟨Z⊤, Z⊤⟩ = 1. Here and below we denote by ⟨·, ·⟩
the metric on the Minkowski space R3,1, on the tangent bundle TM and on the normal
bundle NM.

We denote by B : TM × TM → NM the second fundamental form of the immersion
M ⊂ R3,1 given by

B(X, Y ) = ∇XY −∇XY,

where ∇ and ∇ are the Levi Civita connections of R3,1 and M, respectively. Moreover,
if ν ∈ NM, Aν : TM → TM stands for the symmetric operator such that

⟨Aν(X), Y ⟩ = ⟨B(X, Y ), ν⟩,

for all X, Y ∈ TM. Finally, we denote by ∇⊥ the Levi Civita connection of the normal
bundle NM of the surface M.

Proposition 2.1. Let M be a spacelike surface in R3,1 with a canonical normal null
direction Z, then the following formulas are satisfied

(1) ∇XZ
⊤ = AZ⊥(X) and ∇⊥

XZ
⊥ = −B(X,Z⊤)

for all X ∈ TM.

Proof. Using the Gauss and Weingarten equations of the immersion, we have that

0 = ∇XZ = ∇XZ
⊤ +∇XZ

⊥

=
[
∇XZ

⊤ +B(X,Z⊤)
]
+
[
−AZ⊥(X) +∇⊥

XZ
⊥]

for all X ∈ TM. We obtain the results by taking the tangent and normal parts of this
equality. □

Lemma 2.1. The following identities are satisfied

AZ⊥(Z⊤) = 0 and ∇Z⊤Z⊤ = 0.

In particular, we have ⟨B(X,Z⊤), Z⊥⟩ = 0, for all X ∈ TM.

Proof. From (1), we have

0 = X⟨Z⊤, Z⊤⟩ = 2⟨∇XZ
⊤, Z⊤⟩ = 2⟨AZ⊥(X), Z⊤⟩ = 2⟨X,AZ⊥(Z⊤)⟩,

for all X ∈ TM. Thus ∇Z⊤Z⊤ = AZ⊥(Z⊤) = 0. As a consequence, we obtain

⟨B(X,Z⊤), Z⊥⟩ = ⟨AZ⊥(X), Z⊤⟩ = ⟨X,AZ⊥(Z⊤)⟩ = 0,

for all X ∈ TM. □

Let us consider W a unit spacelike vector field tangent to M such that ⟨Z⊤,W ⟩ = 0
and (Z⊤,W ) is positively oriented.
We define the differential 1−form α : TM → R given by

(2) α(X) = ⟨B(X,W ), Z⊥⟩

for all X ∈ TM. For the particular case when X = W, we write a := α(W ).
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Lemma 2.2. The Levi Civita connection of M satisfies the following relations:

∇Z⊤Z⊤ = 0, ∇WZ
⊤ = aW, ∇Z⊤W = 0 and ∇WW = −aZ⊤.

In particular, [Z⊤,W ] = −aW.

Proof. The first equality was given in Lemma 2.1. Now, since 0 = W ⟨Z⊤, Z⊤⟩ =
2⟨∇WZ

⊤, Z⊤⟩ and ⟨∇WZ
⊤,W ⟩ = ⟨AZ⊥(W ),W ⟩ = ⟨B(W,W ), Z⊥⟩ = a, therefore

∇WZ
⊤ = ⟨∇WZ

⊤, Z⊤⟩Z⊤ + ⟨∇WZ
⊤,W ⟩W = aW.

In a similar way, we have 0 = Z⊤⟨W,Z⊤⟩ = ⟨∇Z⊤W,Z⊤⟩+ ⟨W,∇Z⊤Z⊤⟩ = ⟨∇Z⊤W,Z⊤⟩
and 0 = Z⊤⟨W,W ⟩ = 2⟨∇Z⊤W,W ⟩, thus

∇Z⊤W = ⟨∇Z⊤W,Z⊤⟩Z⊤ + ⟨∇Z⊤W,W ⟩W = 0.

On the other hand, 0 = W ⟨W,W ⟩ = 2⟨∇WW,W ⟩ and 0 =W ⟨Z⊤,W ⟩ = ⟨∇WZ
⊤,W ⟩+

⟨Z⊤,∇WW ⟩, thus ⟨Z⊤,∇WW ⟩ = −⟨∇WZ
⊤,W ⟩ = −⟨aW,W ⟩ = −a, therefore

∇WW = ⟨∇WW,Z
⊤⟩Z⊤ + ⟨∇WW,W ⟩W = −aZ⊤.

Finally, [Z⊤,W ] = ∇Z⊤W −∇WZ
⊤ = −aW. □

Now, in the following results we describe the curvature tensors of the surface M.

Proposition 2.2. The curvature tensor R and the normal curvature tensor R⊥ of the
surface M, in the basis (Z⊤,W ), are given by

R(Z⊤,W )Z⊤ =
(
−Z⊤(a)− a2

)
W and R⊥(Z⊤,W )Z⊥ = −aB(Z⊤,W ).

Proof. Using the equalities in the Lemma 2.2, we get

R(Z⊤,W )Z⊤ = ∇W∇Z⊤Z⊤ −∇Z⊤∇WZ
⊤ +∇[Z⊤,W ]Z

⊤

= −∇Z⊤(aW ) +∇(−aW )Z
⊤

= −Z⊤(a)W − a∇Z⊤W − a∇WZ
⊤

= −Z⊤(a)W − a(aW )

=
(
−Z⊤(a)− a2

)
W.

On the other hand, by (1) we obtain

R⊥(Z⊤,W )Z⊥ = ∇⊥
W∇⊥

Z⊤Z
⊥ −∇⊥

Z⊤∇⊥
WZ

⊥ +∇⊥
[Z⊤,W ]Z

⊥

= ∇⊥
W

(
−B(Z⊤, Z⊤)

)
−∇⊥

Z⊤

(
−B(W,Z⊤)

)
+∇⊥

(−aW )Z
⊥

= −∇⊥
W

(
B(Z⊤, Z⊤)

)
+∇⊥

Z⊤

(
B(W,Z⊤)

)
+ aB(W,Z⊤);

by Codazzi equation and the equalities in the Lemma 2.2, we get

−∇⊥
W

(
B(Z⊤, Z⊤)

)
+∇⊥

Z⊤

(
B(W,Z⊤)

)
= −(∇̃WB)(Z⊤, Z⊤)−B(∇WZ

⊤, Z⊤)

−B(Z⊤,∇WZ
⊤) + (∇̃Z⊤B)(W,Z⊤)

+B(∇Z⊤W,Z⊤) +B(W,∇Z⊤Z⊤)

= −2aB(W,Z⊤),

this finishes the proof. □
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Corollary 2.1. The Gauss curvature of the surface M is given by

K =
⟨R(Z⊤,W )Z⊤,W ⟩

|Z⊤|2|W |2 − ⟨Z⊤,W ⟩2
= −Z⊤(a)− a2.

Another way to compute the Gauss curvature of the surface M in terms of the differ-
ential 1−form defined in (2), is given in the following proposition.

Proposition 2.3. The Gauss curvature of the surface M is given by

K = −dα(Z⊤,W )

Proof. Using Lemma 2.1, we easily get

dα(Z⊤,W ) = Z⊤(α(W ))−W (α(Z⊤))− α([Z⊤,W ])

= Z⊤(a)−W (⟨B(Z⊤,W ), Z⊥⟩)− α(−aW )

= Z⊤(a) + a2;

then by Corollary 2.1, we obtain the result. □

According to Lemma 2.1 and since Z⊥ is a lightlike vector field on the surface, there
exist a differential 1−form β : TM → R given by

(3) B(X,Z⊤) = β(X)Z⊥

for allX ∈ TM. This 1−form β allows as to compute the normal curvature of the surface.
We consider the lightlike vector field W ′ normal to M such that ⟨Z⊥,W ′⟩ = 1; thus(

Z⊤,W,
Z⊥ +W ′

√
2

,
Z⊥ −W ′

√
2

)
is an orthonormal and positively oriented frame of R3,1. From the Ricci equation we have

Corollary 2.2. The normal curvature of the surface M is given by

KN =

〈(
AZ⊥+W ′

√
2

◦ AZ⊥−W ′
√
2

− AZ⊥−W ′
√
2

◦ AZ⊥+W ′
√
2

)(
Z⊤) ,W〉

= −aβ(W ).

Proof. In the orthonormal frame (Z⊤,W ) on TM,

KN = −
〈
(AZ⊥ ◦ AW ′ − AW ′ ◦ AZ⊥)

(
Z⊤) ,W〉

= ⟨R⊥(Z⊤,W )Z⊥,W ′⟩.

Thus we get the desired result by replacing the second equality given in Proposition 2.2
and the definition of the 1−form β in (3). □

Analogously, the normal curvature of the surface is given by the exterior derivative of
the differential 1−form β. See Proposition 2.4 below.

Lemma 2.3. The differential 1−forms α and β are related by the identity

Z⊤(β(W ))−W (β(Z⊤)) = −2α(W )β(W ).
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Proof. In terms of the 1−form β, the Codazzi equation reads as

−∇⊥
W

(
β(Z⊤)Z⊥)+∇⊥

Z⊤

(
β(W )Z⊥) = −2aβ(W )Z⊥,

(see the last part of the proof of Proposition 2.2), thus we easily get[
Z⊤(β(W ))−W (β(Z⊤))

]
Z⊥ = −2aβ(W )Z⊥

which implies the result. □

Proposition 2.4. We have the following formula

KN = dβ(Z⊤,W )

Proof. From Lemma 2.3, we get

dβ(Z⊤,W ) = Z⊤(β(W ))−W (β(Z⊤))− β([Z⊤,W ])

= −2α(W )β(W )− β(−aW )

= −2aβ(W ) + aβ(W )

= −aβ(W ),

and combining with the Corollary 2.2, we obtain the result. □

An alternative way to obtain the Gauss curvature in terms of the 1−form β is given
in the following colollary.

Corollary 2.3. The Gauss curvature of the surface M is given by

K = aβ(Z⊤)

Proof. Since a = ⟨B(W,W ), Z⊥⟩, using the expression given in Corollary 2.1 for the
Gauss curvature, we have

K = −Z⊤(a)− a2 = −Z⊤⟨B(W,W ), Z⊥⟩ − a2

= −⟨∇⊥
W (B(Z⊤,W )), Z⊥⟩+ a2 + aβ(Z⊤)− a2.

But, since W ⟨B(Z⊤,W ), Z⊥⟩ = 0, then ⟨∇⊥
W (B(Z⊤,W )), Z⊥⟩ = 0, which brings us to

the desired result. □

The geometric interpretation of the 1−form β is given in the following proposition.

Proposition 2.5. Z⊥ is a parallel normal vector field on M if and only if β ≡ 0. In
particular, if Z⊥ is a parallel normal vector field on M, then K = KN = 0, i.e., M is
flat and has a flat normal bundle.

Proof. Using the second equality in (1), and the definition of β, we obtain

∇⊥
XZ

⊥ = −B(X,Z⊤) = −β(X)Z⊥,

for all X ∈ TM, which implies the result. The particular case is a consequence of
Corollaries 2.2 - 2.3. □

A partial reciprocal assertion of the particular case in the previous proposition is given
as a consequence of the following proposition.
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Proposition 2.6. If a = α(W ) ̸= 0, then the 1−form β is given by

β(X) =

〈
X,

K

a
Z⊤ +

−KN

a
W

〉
for all X ∈ TM. In particular, if a ̸= 0 and K = KN = 0 then Z⊥ is a parallel normal
vector field.

Proof. Since a ̸= 0, the first assertion is a direct consequence of Corollaries 2.2-2.3. If
a ̸= 0 and K = KN = 0, then β ≡ 0, the previous proposition implies the result. □

Observation 2.1. If we consider the orthonormal frame (Z⊤,W ) on TM, the mean cur-
vature vector of the immersion M ⊂ R3,1 is given by

(4) H⃗ =
1

2
tr⟨·,·⟩B =

1

2

[
B(Z⊤, Z⊤) +B(W,W )

]
.

Lemma 2.4. We have a = 0 if and only if ⟨H⃗, Z⊥⟩ = 0.

Proof. It is not difficult to see that

⟨H⃗, Z⊥⟩ = 1

2
⟨B(Z⊤, Z⊤), Z⊥⟩+ 1

2
⟨B(W,W ), Z⊥⟩

=
1

2
⟨β(Z⊤)Z⊥, Z⊥⟩+ 1

2
a

which implies the result since ⟨Z⊥, Z⊥⟩ = 0. □

The principal relation between the Gauss curvature K, the normal curvature KN and
the mean curvature vector H⃗ of M is given in the following proposition.

Proposition 2.7. If the surface M is minimal (i.e. H⃗ = 0), then M is flat and has a
flat normal bundle (i.e. K = KN = 0).

Proof. From Lemma 2.4 we have a = 0. By Corollaries 2.1 - 2.2 we obtain respectively
K = 0 and KN = 0. □

The result obtained in the previous proposition is related to a particular case of the
work of S.T. Cheng and S.T. Yau in [4]: a complete spacelike surface, with zero constant
mean curvature in three-dimensional Minkowski space, is a spacelike plane. The following
proposition gives a relation between the Gauss curvature and the mean curvature vector.

Proposition 2.8. The mean curvature vector and the Gauss curvature of the surface
M satisfy the following identity

4|H⃗|2 − 2K = |B(W,W )|2

Proof. Using (2) and since Z⊥ is a lightlike vector, by a direct computation we have

4|H⃗|2 = 4⟨H⃗, H⃗⟩ = |B(Z⊤, Z⊤)|2 + 2⟨B(Z⊤, Z⊤), B(W,W )⟩+ |B(W,W )|2

= |β(Z⊤)Z⊥|2 + 2⟨β(Z⊤)Z⊥, B(W,W )⟩+ |B(W,W )|2

= 0 + 2β(Z⊤)a+ |B(W,W )|2;
by Corollary 2.3 we obtain the result. □
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To finish this section, we prove a result that let us permits study some characterizations
of a spacelike surface endowed with a canonical normal null direction.

Proposition 2.9. We have K = KN = 0 if and only if a = 0 or β = 0.

Proof. If a = 0 or β = 0, by Corollaries 2.2 - 2.3 we follow K = KN = 0. Conversely,
if K = 0, by Corollary 2.3, a = 0 or β(Z⊤) = 0. On the other hand, if KN = 0, by
Corollary 2.2, we have a = 0 or β(W ) = 0, thus a = 0 or β = 0. □

As a consequence of the Proposition 2.9, the following special characterization of a
spacelike surface with a canonical normal null direction is given.

Theorem 2.1. Suppose that M is a spacelike surface in the Minkowski space R3,1 with
a canonical normal null direction Z⊥, induced by Z, such that a = 0 and β = 0. Then
the surface M can be parametrized by

(5) ψ(x, y) = α(y) + xZ⊤
0 ,

where α is a curve in R3,1 with α′(y) orthogonal to the constant vector field Z⊤
0 .

Proof. Since a = 0, from Lemma 2.2 we have [Z⊤,W ] = 0, thus there is a parametrization
(x, y) → ψ(x, y) of M such that

∂ψ

∂x
(x, y) = Z⊤(ψ(x, y)) and

∂ψ

∂y
(x, y) = W (ψ(x, y)).

Since β = 0, we have B(X,Z⊤) = β(X)Z⊥ = 0, for all X ∈ TM ; on the other hand,
since ∇Z⊤ = 0, we follow

dZ⊤(X) = ∇XZ
⊤ = ∇XZ

⊤ +B(X,Z⊤) = 0

for all X ∈ TM, thus

Z⊤(ψ(x, y)) = Z⊤(ψ(0, y)) +

∫ x

0

∂

∂u
Z⊤(ψ(u, y))du

= Z⊤(ψ(0, y)) +

∫ x

0

dZ⊤
(
∂ψ

∂u
(u, y)

)
du

= Z⊤(ψ(0, y)).

Similarly, Z⊤(ψ(x, y)) = Z⊤(ψ(x, 0)), therefore Z⊤(ψ(x, y)) = Z⊤
0 is constant, which in

turn implies

ψ(x, y) = ψ(0, y) +

∫ x

0

∂ψ

∂u
(u, y)du

= ψ(0, y) +

∫ x

0

Z⊤(ψ(u, y))du

= ψ(0, y) +

∫ x

0

Z⊤
0 du

= ψ(0, y) + xZ⊤
0 .

Writing α(y) = ψ(0, y), we get the characterization (5) of ψ. □
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With the same ideas we can prove an other similar characterization.

Theorem 2.2. Suppose that M is a spacelike surface in R3,1 with a canonical normal
null direction Z⊥, induced by Z, such that a = 0 and β(Z⊤) = 0. Then the surface M
can be parametrized by

ψ(x, y) = α(y) + xZ⊤(y),

where α is a curve in R3,1 and Z⊤(y) denotes the restriction of Z⊤ on α.

3. The Gauss map of a surface with a canonical normal null direction

3.1. The Grassmannian of the spacelike planes. Consider Λ2R3,1, the vector space
of bivectors of the Minkowski 4−space R3,1 endowed with its natural tensor metric of
signature (3, 3) (for this definition and the following results we refer to [1]).

The Grassmannian of the oriented spacelike 2-planes (which passes through the origin)
in R3,1 is identified with the submanifold of unit and simple bivectors

(6) Q =
{
η ∈ Λ2R3,1 | ⟨η, η⟩ = 1, η ∧ η = 0

}
,

and the oriented Gauss map of a spacelike surface M in R3,1 with the map G :M → Q
such that

(7) G(p) = u1 ∧ u2,

where (u1, u2) is an oriented orthonormal basis for the tangent space TpM.
The Hodge star operator ⋆ : Λ2R3,1 → Λ2R3,1 is defined by the relation

(8) ⟨⋆η, η′⟩ = η ∧ η′

for all η, η′ ∈ Λ2R3,1, where we identify Λ4R3,1 ≃ R using the canonical volume element
e1 ∧ e2 ∧ e3 ∧ e4 ≃ 1. This operator satisfies ⋆2 = −IdΛ2R3,1 , and thus i := −⋆ defines a
complex structure on Λ2R3,1.

We also define the map H : Λ2R3,1 × Λ2R3,1 −→ C by

(9) H(η, η′) = ⟨η, η′⟩+ i η ∧ η′

for all η, η′ ∈ Λ2R3,1. This map is a C−bilinear map on Λ2R3,1, and the Grassmannian
(6) remains as

(10) Q =
{
η ∈ Λ2R3,1 | H(η, η) = 1

}
.

The bivectors

(11) {E1 := e1 ∧ e2, E2 := e2 ∧ e3, E3 := e3 ∧ e1}

form an orthonormal basis, with respect to the form H of Λ2R3,1 as a complex 3−space
with signature (+,+,+). Using this basis of Λ2R3,1, the Grassmannian (10) is identified
with a complex sphere

(12) Q =
{
(z1, z2, z3) ∈ C3 | z21 + z22 + z23 = 1

}
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3.2. Spacelike surfaces with a canonical normal null direction. We consider a
spacelike surface M in R3,1 endowed with a canonical normal null direction Z⊥, induced
by Z, with |Z⊤|2 = 1 and such that a = ⟨B(W,W ), Z⊥⟩ ≠ 0.
We recall that W ′ is a lightlike vector field normal to M such that ⟨Z⊥,W ′⟩ = 1. If

we write B(W,W ) := bZ⊥ + aW ′, the vectors
(13)

e1 = Z⊤, e2 = W, e3 =
(a− b)Z⊥ +B(W,W )√

2a
, and e4 =

(a+ b)Z⊥ −B(W,W )√
2a

form an oriented and orthonormal basis of R3,1 adapted to the immersion M ⊂ R3,1;
therefore, we can define the orthonormal basis (11) of Λ2R3,1.

Lemma 3.1. The Gauss map of M is given by G = Z⊤∧W and its differential satisfies

dG(Z⊤) = β(Z⊤)Z⊥∧W+β(W )Z⊤∧Z⊥ and dG(W ) = β(W )Z⊥∧W+Z⊤∧B(W,W ).

Proof. Clearly G = Z⊤ ∧W. The differential of G is given by

dG(u) = (∇uZ
⊤ +B(Z⊤, u)) ∧W + Z⊤ ∧ (∇uW +B(W,u))

for all u ∈ TpM ; using the identities of Lema 2.2 and the definition of the 1−form β (see
Remark 3) we conclude the result. □

We describe now the differential of the Gauss map in terms of the orthonormal basis
defined in (11) of Λ2R3,1.

Proposition 3.1. The differential of the Gauss map G satisfies

dG(Z⊤) = −K + iKN√
2a

E2 +
KN − iK√

2a
E3

and

dG(W ) =
KN − ia(a− b)√

2a
E2 −

a(a+ b)− iKN√
2a

E3

Proof. From Lemma 3.1, the definitions of the frame adapted to the immersion (13), and
Corollaries 2.2, 2.3, we easily get the result. □

The pull-back of the form H, defined in (9), by the Gauss map G :M → Q ⊂ Λ2R3,1

lets us to define, for all p ∈M, the complex quadratic form G∗Hp : TpM → C given by

G∗Hp(u) := H(dG(u), dG(u)).

This form is analogous to the third fundamental form in the classical theory of surfaces
in Euclidean 3−space. We will describe some properties of this quadratic form for a
spacelike surface with a canonical normal null direction.

Lemma 3.2. If a ̸= 0, the complex quadratic form G∗H satisfies the following identities:

(1) H(dG(Z⊤), dG(Z⊤)) = 0,

(2) H(dG(W ), dG(W )) = 2(2|H⃗|2 −K)− i(2KN), and
(3) H(dG(Z⊤), dG(W )) = −KN + iK.

Proof. The proof of these identities are obtained by a direct computation using the
formulas of dG(Z⊤) and dG(W ) given in Proposition 3.1. □
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Proposition 3.2. If a ̸= 0, the discriminant of the complex quadratic form G∗H satisfies

disc G∗H := − detG∗H = −(K + iKN)
2.

Proof. Using the identities of Lemma 3.2, by a direct computation we get

detG∗H = −(KN + iK)2 = (K + iKN)
2

which implies the result. □

An other direct consequence of Lemma 3.2 is the following result.

Proposition 3.3. If a ̸= 0, the complex quadratic form G∗H in null at every point of
M if and only if K = KN = |H⃗|2 = 0 on M, i.e. M is flat, has flat normal bundle, and
its mean curvature vector is a lightlike vector.

The interpretation of the condition G∗H ≡ 0 is the following: for all p ∈M, the space
dGp(TpM) belongs to

G(p) +
{
ξ ∈ Λ2R3,1 | H(G(p), ξ) = 0 = H(ξ, ξ)

}
⊂ TG(p)Q;

this set is the union of two complex lines through G(p) in the Grassmannian Q of the
oriented spacelike planes of R3,1; explicitly, this complex lines are given by

G(p) + CE2 and G(p) + CE3.

In particular, the first normal space in p ∈M is 1−dimensional, i.e. the osculator space
of the surface is degenerate at every point p ∈M.

3.3. The curvature ellipse. The curvature ellipse associated to the second fundamen-
tal form B of a spacelike surface M in R3,1 is defined as the subset of NpM

(14) Ep := {B(u, u) | u ∈ TpM, |u| = 1}
Suppose that the surface M has a canonical normal null direction Z⊥, induced by Z.
Recall that a = ⟨B(W,W ), Z⊥⟩. Thus, in order to describe the ellipse of curvature of M
we have two cases to consider: a ̸= 0 and a = 0.

Proposition 3.4. If a ̸= 0, the curvature ellipse is not degenerated, at the basis (Z⊥,W ′)

for the normal bundle, and origin in H⃗, the curvature ellipse is parametrized by the
equations

x = cos(2θ)

[
K − |H⃗|2

a

]
+ sin(2θ)

[
−KN

a

]
and y = cos(2θ)

[
−a
2

]
Proof. We write each tangent vector u ∈ TpM as u = cos θZ⊤+sin θW, with 0 ≤ θ ≤ 2π.
By a direct computation we have

(15) B(u, u) = H⃗ + cos(2θ)
[
B(Z⊤, Z⊤)− H⃗

]
+ sin(2θ)B(Z⊤,W ),

writing these normal vectors at the basis (Z⊥,W ′) and using the definition of the 1−form
β (see Remark 3), the identities of Corollaries 2.2, 2.3, and Proposition 2.8, we easily
get the result. □
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The curvature ellipse in a point p ∈ M such that a > 0, K − |H⃗|2 > 0, and KN < 0
is given in the following figure.

Observation 3.1. The normal vector H⃗∗ := B(Z⊤, Z⊤)−H⃗ satisfies |H⃗∗|2 = 2(|H⃗|2−K).

Moreover, since a ̸= 0, we have that H⃗∗ and Z⊥ are linearly independent. Thus, if |H⃗|2 ̸=
K, using the relation (15), we obtain the following characterization: in (H⃗, H⃗∗, Z⊥), the
equation of the ellipse is given by

x2

2||H⃗|2 −K|
+

y2

K2
N

a2

= 1.

We can also describe the curvature ellipse in the degenerate case when a = 0 as in the
following proposition. For briefness, we omit the proof.

Proposition 3.5. If a = 0, the curvature ellipse degenerates the segment[
H⃗ + hZ⊥, H⃗ − hZ⊥

]
where h = max{±⟨H⃗∗,W ′⟩,±β(W )}.

3.3.1. Mean curvature directions and asymptotic directions. If p is a point on a spacelike
surfaceM in R3,1, a mean curvature direction in the tangent plane TpM is defined as the
inverse image by the second fundamental form of the points in the ellipse of curvature
where the line defined by the mean curvature vector intersects the ellipse.

For all p ∈M and u ∈ TpM, the condition that determines a mean curvature direction
is

[H⃗, B(u, u)] = 0,

where the brackets stand for the mixed product in NpM (the determinant in a positively
oriented Lorentzian basis).
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Lemma 3.3. If a ̸= 0, in the basis (Z⊥,W ′) for the normal bundle, we have

H⃗ =
|H⃗|2

a
Z⊥ +

a

2
W ′ and B(u, u) =

[
u21β(Z

⊤) + 2u1u2β(W ) + u22b
]
Z⊥ + (au22)W

′

for all u = u1Z
⊤ + u2W ∈ TpM.

Proof. We have the following:

H⃗ =
1

2

[
B(Z⊤, Z⊤) +B(W,W )

]
=

1

2

[
β(Z⊤)Z⊥ + bZ⊥ + aW ′] = β(Z⊤) + b

2
Z⊥ +

a

2
W ′,

but, using Proposition 2.8, we have

β(Z⊤) + b

2
=

K
2
+ b

2
=
K + ab

2a
=

|H⃗|2

a
.

The expression for B(u, u) is obtained from a direct calculation. □

Proposition 3.6. If a ̸= 0, the mean curvature directions are given by

KZ⊤ +

(
−KN ±

√
K2 +K2

N

)
W.

If a = 0, every tangent vector u ∈ TpM defines a mean curvature direction.

Proof. We suppose that u = u1Z
⊤ + u2W is a mean curvature direction, using the

expressions of the Lemma 3.3 and Proposition 2.8, we obtain

0 = [H⃗, B(u, u)] = u22

[
2|H⃗|2 − ab

2

]
− u21

K

2
+ u1u2KN = u22

K

2
− u21

K

2
+ u1u2KN ;

solving these equation we get

u2 =

(
−KN ±

√
K2 +K2

N

)
u1
K
,

taking u1 = K we obtain the result. □

An asymptotic direction at TpM is defined as the inverse image of the second funda-
mental form of a point where the line that contains the origin is tangent to the ellipse
of curvature.

For all p ∈M, we consider the real quadratic form

δ : TpM −→ R, u 7−→ dGp(u) ∧ dGp(u),

where Λ4R3,1 is identified with R by means of the volume element e1∧ e2∧ e3∧ e4 ≃ 1. A
non-zero vector u ∈ TpM defines an asymptotic direction at p if δ(u) = 0. The opposite
of the determinant of δ, with respect to the metric in M,

∆ := − det δ,

is a second order invariant of the surface. There exist asymptotic directions if and only
if ∆ ≥ 0; moreover, ∆ > 0 if and only if the surface admits two distinct asymptotic
directions at every point. We refer to [2, Section 4] for a complete description of the
asymptotic directions of a spacelike surface in R3,1.
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In the following proposition, we will compute the invariant ∆ and describe the asymp-
totic directions of a spacelike surface with a canonical normal null direction.

Proposition 3.7. At every point ofM we have ∆ = K2, where K is the Gauss curvature
of M. In particular, there are asymptotic directions at every point of M.

Proof. Since δ(u) = ℑm H(dG(u), dG(u)) (δ is the imaginary part of the quadratic form
G∗H) for all u ∈ TpM, using the equalities of Lemma 3.2 we have δ(Z⊤) = 0 and

dG(Z⊤) ∧ dG(W ) = ℑm H(dG(Z⊤), dG(W )) = K.

By a direct computation we get ∆ = [dG(Z⊤) ∧ dG(W )]2 − δ(Z⊤)δ(W ) = K2. □

Proposition 3.8. At every point of M, Z⊤ is an asymptotic direction. Moreover, W is
an asymptotic direction if and only if M has a flat normal bundle.

Proof. Since δ(u) = ℑm H(dG(u), dG(u)) for all u ∈ TpM, by Lemma 3.2 we have

δ(Z⊤) = 0 and δ(W ) = −2KN

which implies the result. □

According to Proposition 3.7, if the Gauss curvature K is not zero, there exists two
distinct asymptotic directions at every point of the surface. From Proposition 3.8, Z⊤

is an asymptotic direction; by a direct computation, in the following proposition we
describe the other asymptotic direction.

Proposition 3.9. If a ̸= 0, we have two cases to consider: when K ̸= 0, there exists
two different asymptotic directions given by

Z⊤ and
KN

K
Z⊤ +W ;

when K = 0, there exists a double asymptotic direction given by Z⊤.
If a = 0, every tangent vector u ∈ TpM defines an asymptotic direction.

Proof. We suppose that the other asymptotic direction is given by rZ⊤ + sW for some
r, s ∈ R, with s ̸= 0. We have

0 = δ(rZ⊤ + sW ) = dG(rZ⊤ + sW ) ∧ dG(rZ⊤ + sW )

= r2δ(Z⊤) + s2δ(W ) + 2(rs)dG(Z⊤) ∧ dG(W )

= s2(−2KN) + 2(rs)K

= 2s(−sKN + rK)

(see the proof of Propositions 3.7-3.8), thus r = KN

K
s; taking s = 1 we obtain the

result. □

4. Construction of spacelike surfaces with a canonical normal null
direction

In this section, we will building some spacelike surfaces with a canonical normal null
direction in the four dimensional Minkowski space R3,1.



111

4.1. Translation spacelike surfaces in R3,1. Let us consider the (translation) surface
M in R3,1 parametrized by

ψ(x, y) = α(x) + δ(y)

where α and δ are two regular spacelike orthogonal curves in R3,1 such that α′ and δ lies
in the hyperplane orthogonal to canonical vector field e1 = (1, 0, 0, 0).
In this case, the components of the induced metric ⟨·, ·⟩ in M are given by

E := ⟨ψx, ψx⟩ = ⟨α′(x), α′(x)⟩ = |α′(x)|2, F = ⟨ψx, ψy⟩ = ⟨α′(x), δ′(y)⟩ = 0

and
G = ⟨ψy, ψy⟩ = ⟨δ′(y), δ′(y)⟩ = |δ′(y)|2,

thus, the determinant of this metric is

det⟨·, ·⟩ = EG− F 2 = |α′(x)|2|δ′(y)|2,
in particular, since det⟨·, ·⟩ > 0, M is spacelike (translation) surface in R3,1.
Now we study the conditions on α and δ such that the canonical vector field e1 on

R3,1 induce a canonical normal null direction on the surface M. Writing e1 = e⊤1 + e⊥1 ,
we have

e⊤1 = cψx + dψy = cα′(x) + dδ′(y),

for some functions c and d on M. So, we have

⟨e⊤1 , α′(x)⟩ = c|α′(x)|2 and 0 = ⟨e1, δ′(y)⟩ = ⟨e⊤1 , δ′(y)⟩ = d|δ′(y)|2,
therefore d = 0, and thus

e⊤1 =
⟨e⊤1 , α′(x)⟩
|α′(x)|2

α′(x).

Proposition 4.1. The canonical vector field e1 induces a canonical normal null direction
on the spacelike (translation) surface M if and only if

⟨e⊤1 , α′(x)⟩2 = |α′(x)|2.

Proof. This result is a consequence of |e⊤1 |2 = 1. □

Suppose that M has a canonical normal null direction with respect e1. We can prove

that e⊤1 only depends on x.Writing λ(x) =
⟨e⊤1 ,α′(x)⟩
|α′(x)|2 , we have e⊤1 = λ(x)α′(x), by Lemma

2.2, we follow ∇e⊤1
e⊤1 = 0, thus

(16) ∇α′(x)α
′(x) = −λ

′(x)

λ(x)
α′(x).

Analogously, sinceW := δ′(y)
|δ′(y)| is a unit spacelike vector field tangent toM and orthogonal

to e⊤1 , from Lemma 2.2 we have ∇e⊤1
W = 0, thus λ(x)∇α′(x)

δ′(y)
|δ′(y)| = 0 i.e.,(

1

|δ′(y)|

)
x

δ′(y) +
1

|δ′(y)|
∇α′(x)δ

′(y) = 0,

therefore

(17) ∇α′(x)δ
′(y) = 0.
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On the other hand, since ∇W e
⊤
1 = aW, we obtain

∇ δ′(y)
|δ′(y)|

λ(x)α′(x) = a
δ′(y)

|δ′(y)|
or

0 = λy(x)α
′(x) + λ(x)∇δ′(y)α

′(x) = aδ′(y),

thus we conclude that a = 0. In particular, from Corollaries 2.2 - 2.3 we have that M is
flat and has a flat normal bundle.

Furthermore, the surface M is minimal (i.e., the mean curvature vector, given in (4),

satisfies H⃗ = 0) if and only if B(e⊤1 , e
⊤
1 ) = B(W,W ) = 0. Indeed, this vectors depends

only on x and y, respectively. Using (16), we derive

B
(
e⊤1 , e

⊤
1

)
= λ2(x)α′′(x) + λ(x)λ′(x)α′(x) ̸= 0

if and only if λα′ is not a constant function.

Example 4.1. The functions α(x) = (cosx, sinx, 0, 0) and δ(y) = (0, 0, sinh y, cosh y)
are spacelike orthogonal curves in Minkowski space R3,1, such that δ lies in the hyperplane
orthogonal to e1. By the previous arguments, the surface M parametrized by

ψ(x, y) = (cos x, sinx, sinh y, cosh y),

is a spacelike surface in R3,1 with a canonical normal null direction induced by e1; in this
case we have

e⊤1 = (sin2 x,− sinx cosx, 0, 0),

which is not constant, therefore, M is flat and has flat normal bundle, but it’s not a
minimal surface.

4.2. Spacelike surfaces in R3,1 as a graph of a function. We will study the situation
when a spacelike surface is given as the graph of a smooth function.

Let f, g : U ⊂ R2 → R be two smooth functions and consider the surface

(18) M :=
{
(x, y, f(x, y), g(x, y)) ∈ R3,1 | (x, y) ∈ U

}
given as the graph of the function (x, y) 7→ (f(x, y), g(x, y)). A global parametrization
of the surface M is given by ψ : U ⊂ R2 → R3,1 which satisfies

ψ(x, y) = (x, y, f(x, y), g(x, y)).

The tangent vectors to the surface M are ψx = (1, 0, fx, gx) and ψy = (0, 1, fy, gy) and
the components of the induced metric ⟨·, ·⟩ in M are given by

E := ⟨ψx, ψx⟩ = 1 + f 2
x − g2x, F := ⟨ψx, ψy⟩ = fxfy − gxgy

and
G := ⟨ψy, ψy⟩ = 1 + f 2

y − g2y.

The determinant of this metric is

det⟨·, ·⟩ = EG− F 2 =
(
1 + |∇f |2

) (
1− |∇g|2

)
+ ⟨∇f,∇g⟩2,

where the right hand side is calculated on R2 with its standard Riemannian flat metric;
in particular, M is a spacelike surface if and only if det⟨·, ·⟩ > 0.
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Proposition 4.2. Let M be a spacelike surface in R3,1 given as in (18). Then M has a
canonical normal null direction with respect to e1 if and only if

EG− F 2 = G.

In this case we have

e⊤1 = ψx −
F

G
ψy.

Proof. We need to compute the tangent part of e1 along M. Writing

e⊤1 = aψx + bψy ∈ TpM,

we get

1 = ⟨e1, ψx⟩ = ⟨e⊤1 , ψx⟩ = aE + bF and 0 = ⟨e1, ψy⟩ = ⟨e⊤1 , ψy⟩ = aF + bG.

Thus,

a =
G

EG− F 2
and b =

−F
EG− F 2

,

therefore

e⊤1 =
G

EG− F 2
ψx +

−F
EG− F 2

ψy.

Note that e⊥1 is a lightlike normal vector field if and only if e⊤1 is a unit spacelike vector
field along M, thus, from the last equality we obtain

⟨e⊤1 , e⊤1 ⟩ =
G2

(EG− F 2)2
E − 2

FG

(EG− F 2)2
F +

F 2

(EG− F 2)2
G

=
G

EG− F 2
,

that is, e⊥1 is a lightlike normal vector field along M if and only if EG− F 2 = G. □

Observation 4.1. In a similar way, ifM is a spacelike surface in R3,1 given as in (18), then
M has a canonical normal null direction with respect to e2 if and only if EG− F 2 = E.
In this case we have e⊤2 = −F

G
ψx + ψy.

Corollary 4.1. With the same hypothesis as in Proposition 4.2, M has a canonical
normal null direction with respect to e1 if and only if

(19) (1 + f 2
y )g

2
x − 2fxfygxgy − (1− g2y)f

2
x = 0.

Proof. The condition EG− F 2 = G is equivalent to the equation (19). □

4.2.1. Particular solutions of the PDE (19). In order to find some particular solutions
of the PDE (19) we use conformal functions over the Lorentz numbers

A = {x+ σy | x, y ∈ R, σ /∈ R, σ2 = 1},
see for example [11, 12].

We consider the function h : R2 → A, over the Lorentz numbers A given by

h(x, y) = f(x, y) + σg(x, y),
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where f and g are the same functions of the previous section; writing z = x + σy,
z = x− σy, |z|2 = zz and the operators

∂

∂z
=

1

2

(
∂

∂x
+ σ

∂

∂y

)
and

∂

∂z
=

1

2

(
∂

∂x
− σ

∂

∂y

)
;

we easily get that the equation (19) is equivalent to(∣∣∣∂h
∂z

∣∣∣2 − ∣∣∣∂h
∂z

∣∣∣2)2

=
∣∣∣∂h
∂z

+
∂h

∂z

∣∣∣2.
In particular, if h : R2 → A is a conformal function, i.e., ∂h

∂z
= 0, we get∣∣∣∂h

∂z

∣∣∣2 = 0 or
∣∣∣∂h
∂z

∣∣∣2 = 1;

in the first case, the components f and g of the function h are given by

f(x, y) =
α(x+ y) + k

2
and g(x, y) =

α(x+ y)− k

2
,

where α is some real function and k is a constant. In the second case, the components
f and g of the function h are given by

f(x, y) =
α2(x+ y) + x2 − y2 +

∫
c(x+ y)d(x+ y) + k(x− y)

2α(x+ y)

and

g(x, y) =
α2(x+ y)− x2 + y2 −

∫
c(x+ y)d(x+ y)− k(x− y)

2α(x+ y)
,

for some real function α, c and k.
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